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Abstract. We extend the application of the concept of structural invariance to bounded time-
independent systems. This concept, previously introduced by two of us to argue that the connection
between random matrix theory and quantum systems with a chaotic classical counterpart is in
fact largely exact in the semiclassical limit is extended to the energy spectra of bounded time-
independent systems. We proceed by showing that the results obtained previously for the quasi-
energies and eigenphases of theS-matrix can be extended to the eigenphases of the quantum
Poincaŕe map which is unitary in the semiclassical limit. We then show that its eigenphases in the
chaotic case move rather stiffly around the unit circle and thus their local statistical fluctuations
transfer to the energy spectrum via Bogomolny’s prescription. We verify our results by studying
numerically the properties of the eigenphases of the quantum Poincaré map for billiards by using
the boundary integral method.

1. Introduction

In previous papers two of us developed the concept of structural invariance for periodically
driven [1] as well as scattering systems [2, 3] in order to establish the connection between
random matrix theory (RMT) on the one hand and quantum systems with a chaotic classical
counterpart on the other. Basically, we recovered for such systems the result predicted for the
long-range behaviour of the spectral two-point function in a seminal paper by Berry [4] and
demonstrated numerically and experimentally in a large, and growing, number of examples
[11,13]. Namely, the fluctuation properties of quantum systems whose classical counterpart is
chaotic behave as those of an appropriately chosen ensemble of random matrices. There have
been numerous attempts to account for this connection. Among the most notable is periodic
orbit theory, which shows how certain random matrix properties arise from a semiclassical
formula connecting the density of states with a given sum over periodic orbits. Another
approach, which has achieved some remarkable successes recently, is the supersymmetric
approach, which has been able to show how such phenomena arise in the context of disordered
systems [5]. For chaotic systems without disorder, however, the results obtained in this manner
are still far from convincing [6,7]. The approach taken by structural invariance is in some sense
different, since it takes an explicitly probabilistic point of view, asserting only that a chaotic
system has RMT properties with probability one and only speaking in terms of ensembles of
systems [1,8,14]. This approach has already led to unexpected predictions, which have since
been confirmed numerically [9] and later by arguments taken from periodic orbit theory [10].

A weak point of our approach was the fact that its application was, in principle, restricted to
the discussion of eigenphase statistics. In this paper, we shall use the semiclassical quantization
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of the Poincaŕe map and its relation to the energy spectrum in order to transfer the statistics of
eigenphases to that of eigenvalues. The following relation, due to Bogomolny [20]:

det(1− T (En)) = 0 (1)

shows that we obtain an energy eigenvalueEn each time one of the eigenphases of the matrix
T (operator associated to the quantum Poincaré map) takes the value unity; thus a stiff rotation
of the unit circle on which the eigenphases are located would transfer their spectral fluctuations
to those of the energy eigenvalues. In this paper we shall show that the assumption of a fairly
uniform speed of the eigenphases as a function of energy is an excellent approximation for
chaotic Poincaŕe maps.

The structure of this paper is as follows. First, in section 2, we give a short account
of structural invariance in the most general terms possible. In section 3, we review how
the connection between classical behaviour and quantum statistics is effected in the case of
canonical maps. In section 4, we proceed to generalize the analysis to Poincaré maps. There
we show, using Bogomolny’s semiclassical quantization, that the spectral statistics of the
eigenphases of the Poincaré map essentially carry over to those of the eigenvalues. In section 5,
we illustrate the results by means of a numerical computation of the stadium billiard.

2. Structural invariance

The point we wish to discuss in this section concerns the construction of a reasonable ensemble
given an individual system. Such problems are not really new to physics: indeed, whenever one
attempts to describe an individual system by an ensemble, as occurs for example in statistical
mechanics, the problem of deriving the ensemble from the individual system arises. In such
cases it is well known that one first needs to identify a set of relevant properties. Once this
has been done, we define the structural invariance group of the object as the group of all
transformations which transform the given object into one with the same relevant properties.

First, let us present a general method to derive such an ensemble. Let us consider a set
of objects with given ‘relevant’ properties—the choice of these will turn out to be crucial,
though it is usually dictated from the problem at hand—and a specific objectA taken from this
set. Furthermore, let the various objects be transformed among each other through the action
of a groupG. The objectA has a certain number of ‘relevant’ properties. We defineH, the
structural invariance group ofA, in the following manner: letH be that subgroup ofG which
leaves all properties ofA invariant. If we now act onA with all the transformations ofH,
we generate a collection� of objects, which has as an additional structure of a homogeneous
space under the groupH. If H additionally has an invariant measure, then a measure on� can
be generated in a natural way as follows. To each subset6 of � one can associate the set of
transformationsT in H which mapA in 6. The Haar measure ofT can then be taken as the
measure of6. This is independent of the choice ofA, because of the invariance of the Haar
measure. Furthermore, it is a measure on� that is invariant under the group action and it is
therefore clearly singled out.

Let us first consider a trivial example. Consider the set of all infinite binary sequences of
ones and minus ones. As relevant properties, we take the value of all finite-range correlation
functions. By this we mean the following: consider the sequence(si). The two-point
correlation is then given by

Ci = lim
N→∞

1

2N

N∑
k=−N

sksk+i (2)

and more general correlations defined through the obvious generalization. As transformations
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acting on binary sequences, we consider all possible transformations. However, the resulting
group is highly pathological and presumably has no Haar measure. One way to proceed is to
limit ourselves to large but finite sequences. The groupG then consists of all transformations
mapping arbitrary finite sequences on other arbitrary finite sequences. If the correlations
of the original sequence are sufficiently small, then this property is respected by almost all
transformations ofG, that is all but a set of very small measure. The structural invariance group
H is then the full group. From this it follows that we can consider the original sequence as
a representative element of the full ensemble of all binary sequences, in which all sequences
are taken to be equally probable. On the other hand, if there is a clear predominance of ones,
say, but no further correlations, then we can takeH to be the set of all maps which permute
the elements of the original sequence. The set� is then the set of all sequences which arise
from the original one through permutation, all sequences being equally probable. Again, it
is reasonable to assume that the original sequence is indeed a representative member of the
ensemble. In this sense, whatever property holds with probability one in the ensemble that has
been constructed in this fashion will also presumably hold for the original element. Note that
this approach does not always work. For example, if I find a non-zero two-point correlation,
it is at least not evident how to define a groupH that respects this property. A better approach
might then be to define anon-invariantmeasure onG that takes this correlation into account
and that respects it with probability one. However, it turns out that we are able to define a
structural invariance group in the majority of the cases we deal with.

3. Canonical maps: associated quantum and classical ensembles

We now wish to apply the above general approach to the particular case of bijective canonical
maps on a compact phase space. To this end, we must define the various ingredients involved
in the construction. The set of all objects is the set of all bijective canonical transformations on
a compact phase space0. The specific object we start from is transformationC0. As for the
‘relevant’ properties, their choice is dictated by the nature of the problem. In the following,
we shall principally be interested in the short-range statistical properties of the eigenphases
and eigenvalues of the associated unitary and Hermitian operators. This corresponds to the
long-time properties of the classical time evolution. For this reason, we shall consider only
such properties to be ‘relevant’ as remain invariant under arbitrary iteration of the map. As
for the groupG, we shall take it to be the direct product of the group of all bijective canonical
transformations with itself, with the following action on the set of all bijective canonical
transformations:

pCα,Cβ : C → CαCCβ. (3)

To complete the construction, it would be necessary to have a Haar measure on the group
G. As far as we know, the existence of such a measure has neither been proved, nor shown
to be impossible. While we believe that such a measure does indeed exist in the case of
compact phase spaces, we shall not make such an assumption, but rather make the following
consideration: after all, what we are really interested in are not the (classical) properties of the
canonical maps, but rather those of the corresponding quantum unitary maps. We therefore
need to quantize bothC0 and the set of all canonical transformations. To this end, we first need
to know the quantum equivalent of the phase space0. Since0 is compact, its quantization
will be a finite-dimensional Hilbert space, with the dimensionN going to infinity ash̄→ 0.
Note that in general not all values of ¯h yield a quantization of0, but only such for which cells
of size(2πh̄)d fit in an integer number of times in the phase space0. We now proceed to
quantize all canonical maps using some quantization technique. Two things shoud be noted



6744 F Leyvraz et al

here: first, there is no unique way to quantize a canonical map. Second, whichever way is used
to associate a unitary map to a canonical map, it can never be such that the quantization of the
product of two canonical maps is the product of the two quantized maps. Such a result can
indeed be obtained, but only approximately, in the limitN → ∞. After having constructed
� in the set of all classical maps, we can proceed to define�Q to consist of the set of all
unitary maps corresponding to a given quantization of the maps in�. In a similar way, we can
translate the groupG in the quantum domain, where it becomes simplyU(N)×U(N), where
N is the dimension of the Hilbert space. The finiteness ofN is a crucial point here, and this
is precisely the point at which we use the fact that the phase space0 is compact. From this it
follows that there exists a (unique) Haar measure on the quantized version ofG and hence, for
every closed subgroupH as well.

There is an apparent problem with the above programme, however. Since the ‘translation’
from classical to quantum language is by no means unique, one cannot assign to each classical
canonical map a well-defined unitary map. Nevertheless, since we are only interested in the
semiclassical limit, this problem is not really severe, since all different possible choices will
be very close to each other. One might worry, further, that an approximate translation of the
groupH from the classical to the quantum domain might lead one to lose the group property.
But this is not the case, since the groupH is defined through the invariance of the properties
of C0. This definition can itself be carried over to the quantum domain and the group property
is then trivially maintained.

Another point that can be raised is the following: most canonical maps of interest are
‘simple’ or smooth, whereas there is no reason to believe that such smoothness is characteristic
of ‘arbitrary’ canonical maps, if this can be given a meaning. Certainly, for unitary maps, it is
easy to see that arbitrary unitary maps in a (high-dimensional) Hilbert space representing the
semiclassical counterpart of a given classical system with probability one fail to correspond
to any reasonable classical canonical transformation. In the light of these facts, one might
worry that our reasoning only applies to such systems as are already arbitrarily complex at the
classical level, and are therefore inapplicable in the cases of interest, where the map is smooth.
We argue that this is incorrect, for the folowing reason: since we are mainly interested in
short-range spectral statistics and since these are dominated by the high iterates ofC0, we are
therefore more interested in fact inCN0 for N � 1 than inC0 itself. ButCN0 is indeed highly
irregular, sinceC0 is chaotic. For this reason, it is presumably qualitatively no different from
CN , whereC is an ‘arbitrary’ canonical transformation. While such a claim is obviously hard to
substantiate, particularly in the absence of a measure on the set of canonical transformations,
which would give a precise meaning to the word ‘arbitrary’ in the above phrase, it is very
reasonable and intuitively appealing.

A related issue arises with respect to integrable and near-integrable systems. Since
sufficiently weak smooth perturbations of an integrable system has invariant tori which cover
a non-vanishing measure of phase space, it might appear that the set of all such systems should
have positive measure in any ordinary sense of the word, in contradiction to our claim, which
is that almost all systems are fully chaotic. This issue is resolved by noting that a generic
perturbation in our sense of the word will, in general, not satisfy the smoothness requirements
of the Kolmogorov–Arnold–Moser (KAM) theorem, so that any amount of such a generic
perturbation will lead to completely irregular dynamics for sufficiently high iterates of the
map.

Finally, it remains to see what the possible special properties ofC0 are. Since we agree
that the only relevant properties are those that remain invariant under arbitrary iterations of the
map, we are left with very few possibilities. Here are the three that we are aware of.
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Time-reversal invariance. If there exists an anti-canonical mapT (that is, a map which maps
the canonical symplectic two-form on its negative) such thatT 2 = 1 and such that

T C0T C0 = 1 (4)

then the mapC0 is said to be time-reversal invariant (TRI). In this case, we takeH to consist
of the pairs(C, T C−1T ). These form a group, and it is straightforward to calculate that it
leaves the TRI property invariant. As such, it is the structural invariance group of an arbitrary
C0 which has no specific property apart from TRI. From this follows that� is simply the set
of all TRI bijective canonical maps, as was in fact to be expected. On the other hand, we are
not (yet!) able to define a measure on�, since neitherG norH have known Haar measures.

This can be readily translated into quantum-mechanical language if we note that in the
absence of spin,T can be represented as complex conjugation in quantum mechanics, so thatH
is given by the subgroup consisting of the pairs of the type(U,Ut), whereUt is the transpose
of U .

Discrete symmetries.LetC0 commute with a groupG of canonical transformationsQ. This
means that the evolution given byC0 has symmetries, given by the mapsQ. This property is
indeed preserved for arbitrary iterations ofC0. The structural invariance groupH is then given
by the subgroup of all pairs(C,C ′) such that bothC andC ′ commute with all elements ofG.
Under these circumstances, the action ofH onC0 respects the property of commuting withG
and generates as a set� the set of all bijective canonical maps that commute withG.

Translating into quantum mechanics means that the quantum version ofH consists of all
pairs of unitary matrices that commute with the quantizationUQ of the mapsQ. This means
that the unitary matrices acting to the left and right ofUC can be put in block diagonal form
in such a way that each block belongs to a given irreducible representation ofG. Thus, the
generated ensemble has a well-defined block structure, in which all blocks are statistically
independent. On the other hand, if a given block transforms according to ad-dimensional
representation ofG, the eigenvalues of the corresponding block will bed-fold degenerate.

Systems with mixed dynamics.A related problem arises with systems having invariant tori,
though not, as we shall see, cantori. Indeed, invariant tori are structures which are preserved
under arbitrary iterations. Furthermore, at least in the most frequently studied case of two
degrees of freedom, they also lead to an absolute division of the phase space in disjoint parts.
The structural invariance group should therefore respect these characteristics. The canonical
maps belonging toH should therefore have the same invariant tori as the mapC0 iself. It will
therefore also automatically leave the same chaotic regions invariant.

Translating this into quantum mechanics, we see that to each torus there corresponds a
unique wavefunction via the WKB prescription. The above condition therefore means that the
group of unitary maps must act on all these integrable eigenfunctions through a phase factor
only. From this follows that the eigenphases in this case can be separated in an integrable
spectrum, which consists of statistically independent eigenphases—since they are acted upon
by the groupU(1) with its Haar measure—and a chaotic part, which can be treated in the
usual way described above, and therefore corresponds to a COE or a circular unitary ensemble
(CUE) for each chaotic region. (Note that this follows from the preceding remark.) Indeed,
when two chaotic regions are separated by an invariant torus (or an integrable region), the
index of the chaotic region is a discrete conserved quantity and acts exactly in the same way
as a discrete symmetry.

This leads to various questions concering the relevance of other phase space structures,
such as homoclinic and heteroclinic tangles, barriers to transport and cantori. That barriers to
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transport only define separate phase space regions up to a given number of iterations is clear.
For this reason, we should certainly not consider it now, since we are limiting ourselves to the
simplest, fully semiclassical case. However, it is clear that such issues will eventually need
to be addressed, since structures of this type can notoriously cause strong localization effects.
While it is agreed that these effects are transient when the phase space is compact, that is the
effects disappear at sufficiently small ¯h, they are nevertheless extremely important in practice.
Similar arguments allow us to rule out the other structures as well. Since they are all invariant
sets, it might be argued that they survive under arbitrary iteration. This is true as far as it
goes; they are, however, complex sets, with fractal structure, which quantum mechanics can
never fully capture. If we take a finite approximation to such an invariant set, however, it will
become ever more complex under iteration and therefore, from the point of view of quantum
mechanics, it will eventually become irrelevant.

Non-primitive period. It is possible thatC0 does not correspond to a primitive period, that
is, it might happen thatC0 can be written in the form:

C0 = Dk (5)

for somek > 1. In this case, it is not clear how to define a structural invariance group that
leaves this property invariant, but the remedy is clear enough. It is simpler then to quantizeD

in the first place. The spectral properties ofUk
D can then be related to those ofUC0.

We can now go back to the first two properties, and show that a TRI system will have
a circular orthogonal ensemble (COE), whereas a system with a discrete symmetry will have
eigenphases that are divided into statistically independent blocks according to the eigenspaces
of UQ. To show the first, we point out that the set� consists of all unitary matricesU such
that

UTUUT = U−1 = U ∗. (6)

HereUT denotes the anti-unitary map which represents time reversal in the quantization under
consideration. As follows from well known theorems, it is always possible to choose a basis
such thatUT corresponds to complex conjugation. From (6) it follows thatU is a symmetric
unitary matrix. The action of the quantum equivalent ofH on� is the following:

pU : V −→ UVUt (7)

whereUt denotes the transpose ofU without complex conjugation. Clearly, this action leaves
the symmetry property ofV invariant. Equally, if we act onUC0 by means ofpU for all U ,
we obtain as a set, the set of all symmetric unitary matrices. We are therefore led to ask what
measure exists on the set of all symmetric unitary matrices such that it is invariant under the
action ofpu given by (7). A standard theorem [12] states that the only such measure is the one
known as the COE.

Let us now consider the case of discrete symmetry in some detail, following closely the
reasoning presented in [8,9]. In the case of discrete symmetry, the structural invariance group
H is given by pairs of unitary matrices acting to the right and to the left of another matrix,
which is also block diagonal in the same basis. The Haar measure ofH is clearly the product
measure of the Haar measures of the various unitary groups restricted to each block. From this
follows that the ensemble is the product of the various CUEs involved, which is a well known
empirical fact, as mentioned in the introduction.

Similarly, we had pointed out a difficulty in the case where the existence of a discrete
symmetry was combined with TRI. This can now be treated in the above manner: we must
determine the structural invariance groupH that respectssimultaneouslyTRI and the symmetry
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Q. In this case, if we describe everything in a basis adapted toG, it is no longer true that
we can describeT through simple complex conjugation. DefineUT to be theanti-unitary
representation ofT in quantum mechanics. A moment’s thought shows that two cases are
possible. First,UT leaves invariant the eigenspaces belonging to the irreducible representations
ofG . Then, in this eigenspace,UT can be represented as complex conjugation and the ensemble
restricted to this eigenspace is indeed the COE, using the same kind of arguments that lead
to the COE when no symmetry is present. On the other hand,UT can act as the combination
of complex conjugation and the operator interchanging the given eigenspace with its time-
reversed counterpart. This is clearly only possible if someQ in G is not itself TRI, that is,
if

TQTQ 6= 1. (8)

The groupH is then given by the pairs(U,UT U−1UT ). In block diagonal form, the matrixU
has entries (

U1 0
0 U2

)
(9)

whereas the matrixUTU−1UT gives(
Ut

2 0
0 Ut

1

)
. (10)

From this it follows readily that the eigenvalues in both eigenspaces are degenerate, but that
the ensemble for each of them is actually the CUE. If we go through the above considerations
from the point of view of group theory, we see that this phenomenon can occur whenever some
irreducible representation of the symmetry group is not self-adjoint, that is, when no basis
can be found in which all the matrices of the representation are symmetric. The conjugate
pair of representations and their associated invariant subspaces will then be interchanged by
time-reversal.

This was verified numerically in [9]. The specific example considered was a fully chaotic
billiard with threefold symmetry but without any symmetry axis. The rotation by 2π/3 is
clearly not TRI and it divides the Hilbert space in three invariant subspaces, generated by eimφ

form equal to one, zero or minus one modulo three, respectively. Whereas the second is clearly
invariant under TRI, the other two are interchanged among each other. For these, indeed, GUE
statistics was clearly observed, whereas in the TRI subspace the usual GOE was observed.
These observations were later confirmed and explained on the basis of periodic orbit theory
by Keating and Robbins [10].

4. From eigenphases to eigenvalues

So far we have only treated the case of a bijective canonical map, which can e.g. describe the
time evolution of a periodically driven system or a Jung scattering map [15]. An important
question, however, is to transfer this analysis to flows generated by a time-independent
Hamiltonian. The immediate problem is that we must find a way to account for the fact
that the overall density of states isnot given by that of the corresponding matrix ensembles
and can in fact be rather arbitrary, whereas the fluctuation properties are indeed given by the
RMT predictions. This difficulty was absent in the earlier cases since the density of states is
indeed correctly predicted to be uniform.

To do this, we consider the energy-dependent Poincaré mapCE(p, q), where the variables
refer to phase space variables in the Poincaré surface of section. The Poincaré map satisfies
the conditions described above. It is bijective (up to a set of points that start from the Poincaré
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surface but never return to it. By the Poincaré recurrence theorem, however, these are of
measure zero and can therefore be disregarded). Further, the part of phase space on which it is
defined is a subset of the energy surface, and as such is automatically compact for a bounded
system. We therefore deduce that the eigenphases of the Poincaré map are distributed in a way
corresponding to the symmetries of the map, which themselves correspond to the symmetries
of the system. It now remains to show in which way this distribution of the eigenphases carries
over to that of the eigenvalues.

To this end one proceeds as follows: Bogomolny [20] has shown that a semiclassical
quantization condition is the following: ifEn is an eigenvalue, then

det(1− T (En)) = 0. (11)

Thus, if the eigenphases ofT (E) are denoted by exp(iφj (E)), then every time a given
φj (E) goes through zero,E is an eigenvalue. It turns out that the whole procedure is only
semiclassical, as the mapT (E) is only unitary in the semiclassical limit, but this is not a
problem, since this limit is in any case the only one we are able to handle. Also, outside of the
true semiclassical limit, the relation between chaos and RMT is much more subtle: in particular,
one has problems such as (transient) Anderson localization, in which chaotic behaviour and
randomly distributed eigenvalues coincide. One has also then to deal with finite tunnelling
probabilities and other phenomena associated with the structure of our canonical map in the
complex plane, which we have left out of consideration entirely, as our understanding of these
is still very incomplete.

It therefore appears that we have reduced the problem of determining the spectrum of a
HamiltonianH(p̃, q̃) to the study of the energy dependence of the eigenphases of the quantized
version of its Poincaré map. Here the tildes indicate canonical variables on the complete phase
space, while canonical variables without a tilde are defined on the surface of section. To handle
the problem, we must first know how the Poincaré map changes under infinitesimal changes
of E. To this end, let us consider two nearby energiesE andE +1E. The mapCE then maps
(p, q) onto(p′, q ′) andC−1

E+1E maps(p′, q ′) onto a point(P,Q) near to the initial condition.
Thus for almost all(p, q)

P = p + δp

Q = q + δq
(12)

whereδp andδq are small. The exceptions occur if an orbit bifurcates between the two energies
E andE + 1E. Since this transformation is canonical, there must exist a ‘Hamiltonian’
TE(p, q), such that

δp = −1E∂TE(p, q)
∂q

δq = 1E∂TE(p, q)
∂p

(13)

that is

P = p −1E∂TE(p, q)
∂q

Q = q +1E
∂TE(p, q)

∂p
.

(14)

Thus the coordinates on the surface of section satisfy the Hamilton equations for the canonical
mapC−1

E+1ECE whereTE(p, q) plays the role of the Hamiltonian and1E plays the role of
the time. To show thatTE(p, q) is the time necessary to return to the Poincaré surface if one
starts from(p, q), we need to use the reduced actionSE =

∫ {pdq − Hdt}. By standard
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arguments [27], is easy to prove that−SE is the generating function ofCE . Using the same
arguments,SE+1E is the generating function of

C−1
E+1E. (15)

Finally, the differential of the action of the trajectory that start onq and ends onQ is given by

dS = d(SE+1E − SE)
or

dS = dS

dE
dE.

Finally, the time to return to the Poincaré surface of section is given by

TE(ps, qs) = dS

dE
.

Summarizing the results for the Poincaré map, the infinitesimal canonical transformation close
to the identity

C−1
E+1ECE = 1−1EC−1(E +1E)

d

dE
C(E)

means the following: consider the ‘Hamiltonian’TE(p, q), which is defined as the time
necessary to return to the surface of section if one starts from(p, q). This ‘Hamiltonian’
generates a flow on the Poincaré surface andC−1

E+1ECE is the infinitesimal canonical
transformation corresponding to following this flow for a ‘time’1E.

If we now follow this through the quantization procedure, we obtain the following: denote
the eigenphases byφj (E) andψj(E) be the corresponding eigenfunctions. Thus

dφj
dE
= 〈ψj(E)| − iT (E)

dT

dE
|ψj(E)〉.

If we now denote byME the self-adjoint operator corresponding toTE , we finally obtain

dφj
dE
= 〈ψj(E)|ME|ψj(E)〉. (16)

Now we must make some key approximations. First, we remember that we are in the
semiclassical limit, that is, that the classical functionTE(ps, qs) is smooth compared with
theψj(E). This implies that instead of using, say, the Wigner distribution in computing the
l.h.s. of equation (8), we can use a smoothed version such as the Husimi distribution without
great error. Since theψj(E) are eigenfunctions of a matrix representing a totally structureless
map, their Husimi distributions will be spread uniformly all over phase space. This would
follow from our considerations on structural invariance, but is equally confirmed by a rigorous
theorem of Shnirelman’s concerning eigenfunctions of chaotic systems. From this one finally
gets

dφj
dE
= TE(p, q) (17)

where the overbar denotes the average over phase space. The crucial point to note is that
the right-hand side depends on a classical energy-dependent quantity. However, it is quite
independent of the specific wavefunction and hence ofj . Since there areN eigenphases on
the unit circle and they move with a velocity of the order of one, they will cross zero at energies
which differ by an order of 1/N . This is natural, since we have chosen our scale of energies
to be the classical one. Therefore, from one eigenvalue to the next, the velocity at which
the eigenphases move hardly changes. Thus, locally at least, the motion of the eigenphases
is quite rigid. This means that the RMT properties of the eigenphases translate directly into
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corresponding properties of the eigenvalues of the system. On the other hand, it is important to
realize that this constancy does not hold forever. Two effects will eventually alter the change
in velocity: first, the average on the l.h.s. of equation (17) will experience a secular change as
E changes. This corresponds to the secular change in the density of states which is usually
eliminated by unfolding the spectrum. On the other hand, another effect may well come into
play even before this secular change becomes noticeable. The point is that equation (17)
is only true as a statistical statement and there are fluctuations around the mean velocity.
The most obvious cause for such fluctuations are departures of the Husimi distribution from
equidistribution. Such deviations are well known to exist, namely the so-called ‘scars’ near
short periodic orbits. It could therefore well be that these accumulated fluctuations account
for some of the effects due to short periodic orbits. To explore this possibility, however, we
would presumably require an understanding of scars which we do not have at present. Note
also that the long-range stiffness found by Berry [4] is a phenomenon that lies beyond the
range of validity of the above remarks. Indeed, its onset is at an infinite distance in terms of
the mean level spacing, as we go to the semiclassical limit.

5. The quantum Poincaŕe map on the billiards

Here we will give a numerical example of the principal results of the last section by studying
the properties of the eigenphases for the rectangle and Bunimovich stadium with Neumann
boundary conditions. The latter is defined as the (convex) region enclosed by two semicircles
of radiusR connected by two parallel segments of lengthL. This system has been shown [19]
to be completely chaotic. Following Bogomolny [20] and Boasman [22], we will use the
boundary integral method for the Helmholtz equation. For a billiard defined by a regionA

with boundaryB it is

− h̄
2

2m
∇29n(x) = En9n(x) x insideA (18)

∂9n(x)

∂n
= 0 x onB (19)

where ∂
∂n

is the normal derivative to the boundary at pointx. Introducing the usual Green
function G0(x

′, x;E) for the free Laplacian and using the Green identity, one has after
integration over the complete region,

1

2
9n(q

′) = h̄2

2m

∮
B

dq
∂G0(q

′, q;E)
∂n

9n(q)− ∂9n(q)
∂n

G0(q
′, q;E)

+(E − En)
∫
A

G0(q
′, x;E)9n(x) dx (20)

whereq andq ′ denote coordinates on the boundaryB.
SettingE = En and imposing the Neumann boundary conditions (other kind of conditions

are straightforward) the last equation takes the form:

h̄2

m

∮
B

∂G0(q
′, q;E)
∂n

9n(q) dq = 9n(q ′). (21)

Discretizing the boundary byN equally spaced points{q}i,j=1,...,N and approximating the
integral by the trapeze rule, the last equation takes the form

h̄21

m

N∑
j=1

∂G0(qi, qj ;E)
∂n

9n(qj ) = 9n(qi) (22)
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Figure 1. Eigenvalues of the operator associated to the
quantum Poincaré map for a quarter of stadium of size
L = 20 andR = 40. We have takenN = 58 and
k = 0.49. Note that the unitarity is better for phases
close to 0 andπ .

Figure 2. Norms of the eigenvalues of figure 1 as a
function of their phases. We plotted only those with a
norm larger than 0.8.

and the eigenvalues of the billiard can be obtained by looking for the roots

det(1− dTi,j (E)) = 0 i, j = 1, . . . , N (23)

whenE is varied as parameter. Hered is the distance introduced by the discretization of the
integral and

Ti,j (E) = k

2i
{n̂(q) · (qs − qt )}H1(k|qs − qt ).

The Hankel function is used because in two dimensions

G0(qi, qj ;E) = −i

4
H
(1)
0

(√
2mE

h̄2 |qi − qj |
)

(24)

andn̂(qi) is the outgoing normal to the boundary at pointqi . To look for the eigenphases we
now solve the eigenvalue equation for the matrixTi,j (E).

We begin by studying the properties of the eigenphases of the quantum Poincaré map in
a rectangle and in a quarter of stadium. The quantum surface of the section that we used is the
boundary of the billiard. The eigenphases ofTi,j (E) for a given value of the energy are shown
in figure 1. The unitarity of the QPM is better in the high-energy regime as expected. Also
the norms are closer to one when the respective phase is zero orπ . This behaviour is shown
in figure 2 where we plotted the norms as a function of the phase.

To study in a detailed way the behaviour of the eigenphases of figure 1 as functions
of the energy we plot in figure 3 their phases and norms as a function of the energy. This
figure suggests that the phases for the stadium move in a ‘rigid way’ when the energy is
varied, whereas for the rectangle the phases move at least with two velocities. To quantify the
velocities we plotted in figure 4(a) the distribution of velocities for the stadium. From this
figure it is easy to conclude that all eigenphases move basically with the same velocity for the
stadium. These results show the validity of equation (17) (this conjecture was also made by
Prange [21]) that the eigenvalues in the chaotic case move in a rigid way independently of the
number of eigenvalues. This is not the case for the rectangle (integrable system) as we can see
in figure 4(b).

To study the secular variation of eigenphases we plot in figure 5 the distributions of the
velocities for the stadium and for the rectangle for different ranges ofk. Also, in table 1 we
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Figure 3. (a) Norms and (b) phases of the eigenphases of the quantum Poincaré map for the same
stadium forN = 58 as a function ofk.

Figure 4. Velocity distribution for (a) the same quarter of stadium fork ∼ 0.45,N = 290 and (b)
the rectangle with an aspect ratio given by the golden mean. We useN = 300. We only used the
eigenphases whose norm is greater than 0.6.

Figure 5. Velocity distributions for the same quarter of stadium withN = 290 and (a) k ∼ 0.02
and (b) k ∼ 0.09.

tabulate the mean values as well as the widths of these and other velocity distributions. From
this it is possible to see that these widths are basically constant whenk is varied in the chaotic
case. This is accord with the theoretical prediction of Doron and Smilansky for ak−1 behaviour
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Table 1. Centres and widths of the velocity distributions of the same quarter of stadium for various
values ofk andN = 290.

k Centre Width

0.02 530.586 39.839
0.03 528.960 39.140
0.04 528.905 42.797
0.05 528.826 42.575
0.06 529.078 39.405
0.07 529.008 36.684
0.08 529.788 37.352
0.09 530.005 33.713

Table 2. Centres and widths of the velocity distributions of the same rectangle for various values
of k andN = 300.

k Centre Width

0.02 515.438 77.142
0.03 516.801 85.977
0.04 519.923 82.403
0.05 519.559 78.797
0.06 520.720 73.579
0.07 521.260 72.360
0.08 522.025 72.095
0.09 522.057 71.590

of the width as function ofE. We also show the widths for integrable systems in table 2. It
is seen that, for comparable values of the mean, the widths are significantly larger than in the
chaotic case. Again, the widths are found to be independent ofk. The fact that the widths are
larger in the integrable case is therefore quite robust under variations of the energy.

The numerical results of this section thus confirm the theoretical predictions: for the
completely chaotic case the eigenphases move almost with the same velocity and thus their
statistical properties translate to those of the energies. Nevertheless, this conclusion does
not hold forever. When the eigenvalues have given a complete turn on the unit circle, large
correlations must occur. These long-range correlations are well known: the saturation in the
spectral rigidity (equivalently in the Dyson–Mehta statistics) related to the shortest periodic
orbit [4], and the periodicity in the Fourier transform of the two levels cluster function,b2(t)

for Rydberg molecules [26]. Also eigenphases with small velocities have been found in the
stadium. These correspond to the bouncing ball states. Note finally, that the techniques
proposed by Lombardi and coworkers [26] for Rydberg molecules in the framework of
multichannel quantum defect theory can be interpreted from the same point of view and
provide an exactly unitary quantum Poincaré map. These maps display similar properties
as those described above for the Poincaré map of the stadium. In particular, the stiffness in the
motion of the eigenphases for the case of chaotic motion is also observed in this system [28].

6. Conclusions

We have presented a systematic approach to the connection between RMT and individual
dynamical systems. This connection is in a sense of a probabilistic type: it rests basically on
conclusions of the form: let a given system be a typical representative of a certain ensemble. If
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the elements of this ensemble have a given property with probability one, the original system
presumably also has the stated property. While this line of argument is wide open to criticisms
from the mathematical side, it is undeniably useful at the heuristic level. Further, similar
lines of reasoning are frequently used in physics—for example in statistical mechanics—when
trying to apply an ensemble description to an individual system. A more genuine concern
concerns the construction of the ensembles: as we are not able to construct ensembles on the
set of all canonical transformations, we must first construct a set of canonical transformations
at the purely classical level and then translate this into quantum mechanics in order to obtain a
reasonable candidate for a measure. On the other hand, it may be possible—and we would like
to suggest that this would be important—to find an invariant measure on the set of all bijective
canonical transformations on a compact phase space. If this were possible, we could define
natural classical equivalents to the CUE and the COE. One could then argue in an entirely
classical way that a given map with chaotic dynamics is a typical element of such a classical
ensemble of canonical maps. Its quantization would therefore belong to the associated quantum
ensemble, whence the required spectral properties follow.

Another limitation is the purely semiclassical nature of the analysis. It does not, for
example, apply to quantum localization: as long as the phase space0 is compact, localization
is only transient, and therefore outside the immediate range of application of semiclassics.
Non-compact phase spaces, on the other hand, also present problems relating to the existence
of an invariant measure, not only in the classical, but also in the quantum case.

On the other hand the translation of the fluctuation properties from the eigenphases to the
energy spectrum is particularly transparent. Thus the fluctuation properties of the energies
are the same as those of the Gaussian ensembles with probability one. This approach shows
that not only do the RMT predictions hold for the two-point function at intermediate energy
distances, but that they should hold at all energy scales and for all correlation functions. Also,
the saturation of the long-range stiffness for the energy spectrum is understood in terms of
complete turns of the eigenphases on the unit circle. Finally, we wish to mention that the
properties of the velocities of the eigenphases promise to be a new quantum signature of
chaos.
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